PAVOL JOZEF ŠAFÁRIK UNIVERSITY IN KOŠICE Faculty of Science

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and the cardinal invariant $\lambda(h, \mathcal{J})$

Viera Šottová

Hejnice 2020

Let start - $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and $\lambda(\triangle, \nabla)$

X is an $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$-space ${ }^{1} \quad$ iff for a sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of elements of \mathcal{P} we can select a set $U_{n} \in \mathcal{U}_{n}$ for each $n \in \omega$ such that $\left\langle U_{n}: n \in \omega\right\rangle$ is a member of \mathcal{R} where \mathcal{P} and \mathcal{R} are some families of sets.

- Introduced by M. Scheepers (1996) in [4].

[^0]
Let start - $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and $\lambda(\triangle, \nabla)$

X is an $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$-space ${ }^{1} \quad$ iff for a sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of elements of \mathcal{P} we can select a set $U_{n} \in \mathcal{U}_{n}$ for each $n \in \omega$ such that $\left\langle U_{n}: n \in \omega\right\rangle$ is a member of \mathcal{R} where \mathcal{P} and \mathcal{R} are some families of sets.

- Introduced by M. Scheepers (1996) in [4].

$$
\begin{gathered}
\lambda(\mathcal{I}, \mathcal{J})=\min \left\{|\mathcal{R}|: \mathcal{R} \subseteq{ }^{\omega} \mathcal{I} \wedge\left(\forall \varphi \in^{\omega} \omega\right)(\exists\langle s(n): n \in \omega\rangle \in \mathcal{R})\right. \\
\left.\{n: \varphi(n) \in s(n)\} \in \mathcal{J}^{+}\right\} .
\end{gathered}
$$

- Definition of $\lambda(\mathcal{I}, \mathcal{J})^{2}$ by J. Šupina (2016) in [7].

[^1]
Let start - why?

- J. Šupina (2016) proved that

$$
\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right)^{3}=\lambda(\mathcal{I}, \mathcal{J})
$$

${ }^{3}$ The minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$.

Let start - why?

- J. Šupina (2016) proved that

$$
\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right)^{3}=\lambda(\mathcal{I}, \mathcal{J})
$$

- Corollary (V.Š., J. Šupina 2019)

$$
\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\lambda(\mathcal{I}, \mathcal{J}),
$$

${ }^{3}$ The minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$.

Let start - why?

- J. Šupina (2016) proved that

$$
\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right)^{3}=\lambda(\mathcal{I}, \mathcal{J})
$$

- Corollary (V.Š., J. Šupina 2019)

$$
\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\lambda(\mathcal{I}, \mathcal{J}),
$$

- Nowadays, J. Šupina presented

$$
\begin{gathered}
\operatorname{non}\left(\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{J}-\Gamma\right)\right)=\lambda(*, \mathcal{J}) \\
\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Omega)\right)=\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{O})\right)=\lambda(\mathcal{I}, *)
\end{gathered}
$$

${ }^{3}$ The minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$.

Let change - terminology

- Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$. a sequence $s \in{ }^{\omega} \mathcal{A}$ will be called an \mathcal{A}-slalom.
- Let $h \in{ }^{\omega} \omega$ and $h(n) \geq 1$ for all but finitely many $n \in \omega$. a Fin-slalom s is an h-slalom ${ }^{4}$ if $|s(n)| \leq h(n)$ for each $n \in \omega$,

Let change - terminology

- Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$. a sequence $s \in{ }^{\omega} \mathcal{A}$ will be called an \mathcal{A}-slalom.
- Let $h \in{ }^{\omega} \omega$ and $h(n) \geq 1$ for all but finitely many $n \in \omega$. a Fin-slalom s is an h-slalom ${ }^{4}$ if $|s(n)| \leq h(n)$ for each $n \in \omega$,
- A function $\varphi \in{ }^{\omega} \omega \mathcal{J}$-evades \mathcal{A}-slalom s if $\{n: \varphi(n) \in s(n)\} \in \mathcal{J}$.

Let change - terminology

- Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$. a sequence $s \in{ }^{\omega} \mathcal{A}$ will be called an \mathcal{A}-slalom.
- Let $h \in{ }^{\omega} \omega$ and $h(n) \geq 1$ for all but finitely many $n \in \omega$. a Fin-slalom s is an h-slalom ${ }^{4}$ if $|s(n)| \leq h(n)$ for each $n \in \omega$,
- A function $\varphi \in{ }^{\omega} \omega \mathcal{J}$-evades \mathcal{A}-slalom s if $\{n: \varphi(n) \in s(n)\} \in \mathcal{J}$.

Let change - From ideals to families

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.
$\lambda(\mathcal{A}, \mathcal{J})=\min \left\{|\mathcal{S}|: \mathcal{S}\right.$ consists of \mathcal{A}-slaloms, $\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{S}) \neg(\varphi \mathcal{J}$-evades $\left.s)\right\}$

Let change - From ideals to families

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.
$\lambda(\mathcal{A}, \mathcal{J})=\min \left\{|\mathcal{S}|: \mathcal{S}\right.$ consists of \mathcal{A}-slaloms, $\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{S}) \neg(\varphi \mathcal{J}$-evades $\left.s)\right\}$

Proposition

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$ be such family that $\bigcup \mathcal{A}=\omega$.
(1) If \mathcal{A} has the finite union property and $\mathrm{Fin} \subseteq \mathcal{A}$ then

$$
\mathfrak{p} \leq \lambda(\mathcal{A}, \text { Fin }) \leq \mathfrak{b}
$$

2 If \mathcal{A} does not have the finite union property then

$$
\lambda(\mathcal{A}, \text { Fin })=\min \left\{k:\left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\} \subseteq \mathcal{A} \text { and } \bigcup_{i<k} A_{i}=\omega\right\} .
$$

Let change - From ideals to families

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.
$\lambda(\mathcal{A}, \mathcal{J})=\min \left\{|\mathcal{S}|: \mathcal{S}\right.$ consists of \mathcal{A}-slaloms, $\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{S}) \neg(\varphi \mathcal{J}$-evades $\left.s)\right\}$

Proposition

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$ be such family that $\bigcup \mathcal{A}=\omega$.
(1) If \mathcal{A} has the finite union property and $\mathrm{Fin} \subseteq \mathcal{A}$ then

$$
\mathfrak{p} \leq \lambda(\mathcal{A}, \text { Fin }) \leq \mathfrak{b}
$$

2 If \mathcal{A} does not have the finite union property then

$$
\lambda(\mathcal{A}, \text { Fin })=\min \left\{k:\left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\} \subseteq \mathcal{A} \text { and } \bigcup_{i<k} A_{i}=\omega\right\}
$$

- e.g.: $\lambda(\mathcal{P}(\omega)$, Fin $)=1$.

Let change - From ideals to families

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.
$\lambda(\mathcal{A}, \mathcal{J})=\min \left\{|\mathcal{S}|: \mathcal{S}\right.$ consists of \mathcal{A}-slaloms, $\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{S}) \neg(\varphi \mathcal{J}$-evades $\left.s)\right\}$

Proposition

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$ be such family that $\bigcup \mathcal{A}=\omega$.
(1) If \mathcal{A} has the finite union property and $\mathrm{Fin} \subseteq \mathcal{A}$ then

$$
\mathfrak{p} \leq \lambda(\mathcal{A}, \text { Fin }) \leq \mathfrak{b}
$$

2 If \mathcal{A} does not have the finite union property then

$$
\lambda(\mathcal{A}, \text { Fin })=\min \left\{k:\left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\} \subseteq \mathcal{A} \text { and } \bigcup_{i<k} A_{i}=\omega\right\}
$$

- e.g.: $\lambda(\mathcal{P}(\omega)$, Fin $)=1$.
- What about $\mathcal{A} \subseteq$ Fin which has the finite union property?

Let change - from ideals to h-slaloms

- Let a function $h \in{ }^{\omega} \omega$ not be a \mathcal{J}-equal to zero, i.e. $\{n: h(n) \neq 0\} \notin \mathcal{J}{ }^{5}{ }^{5}$

[^2]
Let change - from ideals to h-slaloms

- Let a function $h \in{ }^{\omega} \omega$ not be a \mathcal{J}-equal to zero, i.e. $\{n: h(n) \neq 0\} \notin \mathcal{J}$. ${ }^{5}$

$$
\begin{aligned}
\lambda(h, \mathcal{J})=\min & \left\{|\mathcal{S}|: \mathcal{S} \text { consists of } h \text {-slaloms, }\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{S})\right. \\
& \neg(\varphi \mathcal{J} \text {-evades } s)\} .
\end{aligned}
$$

[^3]
Let change - from ideals to h-slaloms

- Let a function $h \in{ }^{\omega} \omega$ not be a \mathcal{J}-equal to zero, i.e. $\{n: h(n) \neq 0\} \notin \mathcal{J}$. ${ }^{5}$

$$
\begin{aligned}
& \lambda(h, \mathcal{J})=\min \left\{|\mathcal{S}|: \mathcal{S} \text { consists of } h \text {-slaloms, }\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{S})\right. \\
&\neg(\varphi \mathcal{J} \text {-evades } s)\} .
\end{aligned}
$$

- By T. Bartoszyński [1] (1984)
$\operatorname{non}(\mathcal{M})=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq{ }^{\omega} \omega,\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists f \in \mathcal{F})|\{i: \varphi(i)=f(i)\}|=\aleph_{0}\right\}$.

[^4]
Let change - from ideals to h-slaloms

- Let a function $h \in{ }^{\omega} \omega$ not be a \mathcal{J}-equal to zero, i.e. $\{n: h(n) \neq 0\} \notin \mathcal{J} .{ }^{5}$

$$
\begin{aligned}
& \lambda(h, \mathcal{J})=\min \left\{|\mathcal{S}|: \mathcal{S} \text { consists of } h \text {-slaloms, }\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{S})\right. \\
&\neg(\varphi \mathcal{J} \text {-evades } s)\} .
\end{aligned}
$$

- By T. Bartoszyński [1] (1984)
$\operatorname{non}(\mathcal{M})=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq{ }^{\omega} \omega,\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists f \in \mathcal{F})|\{i: \varphi(i)=f(i)\}|=\aleph_{0}\right\}$.
- Consequently,
$\lambda(h$, Fin $)=\operatorname{non}(\mathcal{M})$ for any admissible $h \in{ }^{\omega} \omega .{ }^{6}$

[^5]
Let change - from ideals to h-slaloms

Diagram. Cardinal invariants of the continuum and the $\lambda(\mathcal{S}, \mathcal{J})$.

Let make a cover...

Recall

- a sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of open sets of X is a \mathcal{I} - γ-cover of X iff the set $\left\{n \in \omega: x \notin U_{n}\right\} \in \mathcal{I}$ for each $x \in X$,
- \mathcal{I} - Γ denotes the family of all \mathcal{I} - γ-covers of X. ${ }^{7}$

[^6]
Let make a cover...

Recall

- a sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of open sets of X is a \mathcal{I} - γ-cover of X iff the set $\left\{n \in \omega: x \notin U_{n}\right\} \in \mathcal{I}$ for each $x \in X$,
- \mathcal{I} - Γ denotes the family of all \mathcal{I} - γ-covers of X. ${ }^{7}$

Let $c \in \omega$ be a constant.

- A sequence $\left\langle U_{n}: n \in \omega\right\rangle$ is called a γ_{c}-cover iff $\left|\left\{n \in \omega: x \notin U_{n}\right\}\right| \leq c$ for each $x \in X$.
- For instance, let $\left\{x_{n}: n \in \omega\right\}$ be a set of pairwise disjoint point of X and define $U_{n}=X \backslash\left\{x_{n}\right\}$. Then $\left\langle U_{n}: n \in \omega\right\rangle$ is a γ_{1}-cover.
- Γ^{c} denotes the family of all γ_{c}-covers of X.

[^7]
$\mathrm{S}_{1}\left(\Gamma_{h}, \mathcal{J}-\Gamma\right)$

Let $h \in{ }^{\omega} \omega$

- Γ_{h} denotes the family of all sequences of $\gamma_{h(n)}$-covers for a function i.e.,

$$
\begin{gathered}
\left\langle\left\langle U_{n, m}: m \in \omega\right\rangle: n \in \omega\right\rangle \in \Gamma_{h} \\
\hat{\mathbb{}} \\
\left\langle U_{n, m}: m \in \omega\right\rangle \text { is a } \gamma_{h(n)} \text {-cover for each } n \in \omega .
\end{gathered}
$$

Lemma

- Let X be a topological space. If $|X|<\lambda(h, \mathcal{J})$ then X is an $\mathrm{S}_{1}\left(\Gamma_{h}, \mathcal{J}-\Gamma\right)$-space.
- Let D be a discrete topological space and $h \in{ }^{\omega} \omega$ being no \mathcal{J}-equal to zero. Then $|D|<\lambda(h, \mathcal{J})$ if and only if D is an $\mathrm{S}_{1}\left(\Gamma_{h}, \mathcal{J}-\Gamma\right)$-space.

$\mathrm{S}_{1}\left(\Gamma_{h}, \mathcal{J}-\Gamma\right)$

Let $h \in{ }^{\omega} \omega$

- Γ_{h} denotes the family of all sequences of $\gamma_{h(n)}$-covers for a function i.e.,

$$
\begin{aligned}
& \left\langle\left\langle U_{n, m}: m \in \omega\right\rangle: n \in \omega\right\rangle \in \Gamma_{h} \\
& \downarrow \\
& \left\langle U_{n, m}: m \in \omega\right\rangle \text { is a } \gamma_{h(n)} \text {-cover for each } n \in \omega \text {. }
\end{aligned}
$$

Lemma

- Let X be a topological space. If $|X|<\lambda(h, \mathcal{J})$ then X is an $\mathrm{S}_{1}\left(\Gamma_{h}, \mathcal{J}-\Gamma\right)$-space.
- Let D be a discrete topological space and $h \in{ }^{\omega} \omega$ being no \mathcal{J}-equal to zero. Then $|D|<\lambda(h, \mathcal{J})$ if and only if D is an $\mathrm{S}_{1}\left(\Gamma_{h}, \mathcal{J}-\Gamma\right)$-space.

Corollary

$\operatorname{non}\left(\mathrm{S}_{1}\left(\Gamma_{h}, \mathcal{J}-\Gamma\right)\right)=\lambda(h, \mathcal{J})$. In particular, $\operatorname{non}\left(\mathrm{S}_{1}\left(\Gamma_{h}, \operatorname{Fin}\right)\right)=\operatorname{non}(\mathcal{M})$.

$\mathrm{S}_{1}\left(\Gamma_{h}, \Gamma\right)$

Diagram. Relations with respect to well-known $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.

$\mathrm{S}_{1}\left(\Gamma_{h}, \Gamma\right)$

Diagram. Relations with respect to well-known $S_{1}(\Gamma, \Gamma)$-space.

Proposition

The Baire space is not an $\mathrm{S}_{1}\left(\Gamma_{h}, \Gamma\right)$-space.

$\mathrm{S}_{1}\left(\Gamma_{h}, \Gamma\right)$

Diagram. Relations with respect to well-known $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.

Proposition

The Baire space is not an $\mathrm{S}_{1}\left(\Gamma_{h}, \Gamma\right)$-space.

- even more the Baire space is not an $\mathrm{S}_{1}\left(\Gamma_{\mathbf{1}}, \Gamma\right)$-space,

$\mathrm{S}_{1}\left(\Gamma_{h}, \Gamma\right)$

Diagram. Relations with respect to well-known $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.

Proposition

The Baire space is not an $\mathrm{S}_{1}\left(\Gamma_{h}, \Gamma\right)$-space.

- even more the Baire space is not an $\mathrm{S}_{1}\left(\Gamma_{\mathbf{1}}, \Gamma\right)$-space,
- $\lambda(h, \mathcal{J})=\operatorname{non}(\mathcal{M})$ where $h \in^{\omega} \omega$ is not \mathcal{J}-equal to zero and \mathcal{J} is an ideal that has the Baire property.

$\mathrm{S}_{1}\left(\Gamma^{c}, \Gamma^{c}\right)$ as a weird phenomenon...

- A set $\left\{X_{n} \subseteq X: n \in \omega\right\}$ is k-wise disjoint iff any k-tuple of sets has the empty intersection. ${ }^{8}$

[^8]
$\mathrm{S}_{1}\left(\Gamma^{c}, \Gamma^{c}\right)$ as a weird phenomenon...

- A set $\left\{X_{n} \subseteq X: n \in \omega\right\}$ is k-wise disjoint iff any k-tuple of sets has the empty intersection. ${ }^{8}$
- characterization of γ_{c}-covers:

A sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of open sets is a γ_{c}-cover if and only if $\left\{X \backslash U_{n}: n \in \omega\right\}$ is a $(c+1)$-wise disjoint set of closed sets in X.

[^9]
$\mathrm{S}_{1}\left(\Gamma^{c}, \Gamma^{c}\right)$ as a weird phenomenon...

- A set $\left\{X_{n} \subseteq X: n \in \omega\right\}$ is k-wise disjoint iff any k-tuple of sets has the empty intersection. ${ }^{8}$
- characterization of γ_{c}-covers:

A sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of open sets is a γ_{c}-cover if and only if $\left\{X \backslash U_{n}: n \in \omega\right\}$ is a $(c+1)$-wise disjoint set of closed sets in X.

Diagram. Relations with respect to well-known $S_{1}(\Gamma, \Gamma)$-space.

[^10]
$\mathrm{S}_{1}\left(\Gamma^{c}, \Gamma^{c}\right)$ as a weird phenomenon...

Proposition

Let c be a constant.

- No infinite discrete space is an $\mathrm{S}_{1}\left(\Gamma^{1}, \Gamma^{c}\right)$-space.
- Let X be a space with infinitely many accumulation points. Then X is not an $\mathrm{S}_{1}\left(\Gamma^{1}, \Gamma^{1}\right)$-space.

$\mathrm{S}_{1}\left(\Gamma^{c}, \Gamma^{c}\right)$ as a weird phenomenon...

Proposition

Let c be a constant.

- No infinite discrete space is an $\mathrm{S}_{1}\left(\Gamma^{1}, \Gamma^{c}\right)$-space.
- Let X be a space with infinitely many accumulation points. Then X is not an $\mathrm{S}_{1}\left(\Gamma^{1}, \Gamma^{1}\right)$-space.
- Each space with finite many but at least one accumulation points is an $\mathrm{S}_{1}\left(\Gamma^{c}, \Gamma^{1}\right)$-space.

$\mathrm{S}_{1}\left(\Gamma^{c}, \Gamma^{c}\right)$ as a weird phenomenon...

Proposition

Let c be a constant.

- No infinite discrete space is an $\mathrm{S}_{1}\left(\Gamma^{1}, \Gamma^{c}\right)$-space.
- Let X be a space with infinitely many accumulation points. Then X is not an $\mathrm{S}_{1}\left(\Gamma^{1}, \Gamma^{1}\right)$-space.
- Each space with finite many but at least one accumulation points is an $\mathrm{S}_{1}\left(\Gamma^{c}, \Gamma^{1}\right)$-space.
- There is an $\mathrm{S}_{1}\left(\Gamma^{1}, \Gamma^{2}\right)$-space which is not an $\mathrm{S}_{1}\left(\Gamma^{1}, \Gamma^{1}\right)$-space.

pavol jozef Šafárik university in košlce Faculty of Science

INSTITUTE OF MATHEMATICS

Thank you for your attention

viera.sottova@student.upjs.sk

Bibliography

䡒 Bartoszyński T．：Additivity of measure implies additivity of category．Trans． Amer．Math．Soc． 281 （1984），209－213．

Blass A．：Combinatorial cardinal characteristics of the Continuum．Foreman M．，Kanamori A．（eds．）Handbook of Set Theory．Springer，Dordrecht（2010）， 24－27．

囦 Bukovský L．，Das P．，Šupina J．：Ideal quasi－normal convergence and related notions，Colloq．Math． 146 （2017），265－281．
：Scheepers M．：Combinatorics of open covers I：Ramsey theory，Topology Appl． 69 （1996），31－62．
國 Šottová V．：Cardinal invariant $\lambda(\mathcal{S}, \mathcal{J})$ ．In：GEYSER MATH．CASS． 1 （2019）， 64－72．
－Šottová V．，Šupina J．：Principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ ：ideals and functions．In：Topology Appl． 258 （2019），282－304．
Silupina J．：Ideal QN－spaces．J．Math．Anal．Appl． 434 （2016），477－491．

[^0]: ${ }^{1}$ An ideal version was presented in several papers, e.g.[3, 6]...
 ${ }^{2}$ The family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called ideal, if it is closed under taking subsets and finite unions and does not contain the set ω, but contains all finite subsets of ω.

[^1]: ${ }^{1}$ An ideal version was presented in several papers, e.g.[3, 6]...
 ${ }^{2}$ The family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called ideal, if it is closed under taking subsets and finite unions and does not contain the set ω, but contains all finite subsets of ω.

[^2]: ${ }^{5}$ Recall that a function $\varphi \mathcal{J}$-evades slalom s iff $\left.\{n: \varphi(n) \in s(n)\} \notin \mathcal{J}\right\}$.
 ${ }^{6}$ Compare with [1] or [5].

[^3]: ${ }^{5}$ Recall that a function $\varphi \mathcal{J}$-evades slalom s iff $\left.\{n: \varphi(n) \in s(n)\} \notin \mathcal{J}\right\}$.
 ${ }^{6}$ Compare with [1] or [5].

[^4]: ${ }^{5}$ Recall that a function $\varphi \mathcal{J}$-evades slalom s iff $\left.\{n: \varphi(n) \in s(n)\} \notin \mathcal{J}\right\}$.
 ${ }^{6}$ Compare with [1] or [5].

[^5]: ${ }^{5}$ Recall that a function $\varphi \mathcal{J}$-evades slalom s iff $\left.\{n: \varphi(n) \in s(n)\} \notin \mathcal{J}\right\}$.
 ${ }^{6}$ Compare with [1] or [5].

[^6]: ${ }^{7}$ Fin- Γ known as Γ was introduced by M. Scheepers [4].

[^7]: ${ }^{7}$ Fin- Γ known as Γ was introduced by M. Scheepers [4].

[^8]: ${ }^{8}$ Let stress that notions k-wise disjoint sets and sequences will be interchangeable, i.e., a sequence $\left\langle X_{n}: n \in \omega\right\rangle$ is k-wise disjoint if and only if the corresponding set $\left\{X_{n} \subseteq X: n \in \omega\right\}$ is k-wise disjoint.

[^9]: ${ }^{8}$ Let stress that notions k-wise disjoint sets and sequences will be interchangeable, i.e., a sequence $\left\langle X_{n}: n \in \omega\right\rangle$ is k-wise disjoint if and only if the corresponding set $\left\{X_{n} \subseteq X: n \in \omega\right\}$ is k-wise disjoint.

[^10]: ${ }^{8}$ Let stress that notions k-wise disjoint sets and sequences will be interchangeable, i.e., a sequence $\left\langle X_{n}: n \in \omega\right\rangle$ is k-wise disjoint if and only if the corresponding set $\left\{X_{n} \subseteq X: n \in \omega\right\}$ is k-wise disjoint.

