PAVOL JOZEF ŠAFÁRIK UNIVERSITY IN KOŠICE Faculty of Science

INSTITUTE OF MATHEMATICS

Selection principle $S_1(\mathcal{P}, \mathcal{R})$ and the cardinal invariant $\lambda(h, \mathcal{J})$

Viera Šottová

Hejnice 2020

Let start - $S_1(\mathcal{P}, \mathcal{R})$ and $\lambda(\triangle, \bigtriangledown)$

X is an $S_1(\mathcal{P}, \mathcal{R})$ -space¹

iff for a sequence $\langle \mathcal{U}_n: n \in \omega \rangle$ of elements of \mathcal{P} we can select a set $U_n \in \mathcal{U}_n$ for each $n \in \omega$ such that $\langle U_n: n \in \omega \rangle$ is a member of \mathcal{R} where \mathcal{P} and \mathcal{R} are some families of sets.

• Introduced by M. Scheepers (1996) in [4].

¹An ideal version was presented in several papers, e.g.[3, 6]...

² The family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called **ideal**, if it is closed under taking subsets and finite unions and does not contain the set ω , but contains all finite subsets of ω .

Let start - $S_1(\mathcal{P}, \mathcal{R})$ and $\lambda(\triangle, \bigtriangledown)$

X is an $S_1(\mathcal{P}, \mathcal{R})$ -space¹

iff for a sequence $\langle \mathcal{U}_n: n \in \omega \rangle$ of elements of \mathcal{P} we can select a set $U_n \in \mathcal{U}_n$ for each $n \in \omega$ such that $\langle U_n: n \in \omega \rangle$ is a member of \mathcal{R} where \mathcal{P} and \mathcal{R} are some families of sets.

• Introduced by M. Scheepers (1996) in [4].

$$\lambda(\mathcal{I},\mathcal{J}) = \min\{|\mathcal{R}|: \ \mathcal{R} \subseteq {}^{\omega}\mathcal{I} \land (\forall \varphi \in {}^{\omega}\omega)(\exists \langle s(n): \ n \in \omega \rangle \in \mathcal{R}) \\ \{n: \ \varphi(n) \in s(n)\} \in \mathcal{J}^+\}.$$

• Definition of $\lambda(\mathcal{I}, \mathcal{J})^2$ by J. Šupina (2016) in [7].

¹An ideal version was presented in several papers, e.g.[3, 6]...

² The family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called **ideal**, if it is closed under taking subsets and finite unions and does not contain the set ω , but contains all finite subsets of ω .

• J. Šupina (2016) proved that

$$\operatorname{non}(S_1(\mathcal{I}\text{-}\Gamma,\mathcal{J}\text{-}\Gamma))^3 = \lambda(\mathcal{I},\mathcal{J}),$$

³The minimal cardinality of a perfectly normal space which is not an $S_1(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$.

• J. Šupina (2016) proved that

$$\operatorname{non}(S_1(\mathcal{I}\text{-}\Gamma,\mathcal{J}\text{-}\Gamma))^3 = \lambda(\mathcal{I},\mathcal{J}),$$

• Corollary (V.Š., J. Šupina 2019) $\mathrm{non}(\mathrm{S}_1(\mathcal{I}\text{-}\Gamma_0,\mathcal{J}\text{-}\Gamma_0)) = \mathrm{non}(\mathrm{S}_1(\mathcal{I}\text{-}\Gamma_0^\mathrm{m},\mathcal{J}\text{-}\Gamma_0)) = \lambda(\mathcal{I},\mathcal{J}),$

³The minimal cardinality of a perfectly normal space which is not an $S_1(\mathcal{I}$ - Γ, \mathcal{J} - $\Gamma)$.

• J. Šupina (2016) proved that

$$\operatorname{non}(S_1(\mathcal{I}\text{-}\Gamma,\mathcal{J}\text{-}\Gamma))^3 = \lambda(\mathcal{I},\mathcal{J}),$$

- Corollary (V.Š., J. Šupina 2019) $\mathrm{non}(\mathrm{S}_1(\mathcal{I}\text{-}\Gamma_0,\mathcal{J}\text{-}\Gamma_0)) = \mathrm{non}(\mathrm{S}_1(\mathcal{I}\text{-}\Gamma_0^\mathrm{m},\mathcal{J}\text{-}\Gamma_0)) = \lambda(\mathcal{I},\mathcal{J}),$
- Nowadays, J. Šupina presented

 $non(S_1(\Omega^{ct}, \mathcal{J}\text{-}\Gamma)) = \lambda(*, \mathcal{J}),$ $non(S_1(\mathcal{I}\text{-}\Gamma, \Omega)) = non(S_1(\mathcal{I}\text{-}\Gamma, \mathcal{O})) = \lambda(\mathcal{I}, *)$

³The minimal cardinality of a perfectly normal space which is not an $S_1(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$.

Let change - terminology

• Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

a sequence $s \in {}^{\omega}\mathcal{A}$ will be called an \mathcal{A} -slalom.

Let h ∈ ^ωω and h(n) ≥ 1 for all but finitely many n ∈ ω.
 a Fin-slalom s is an h-slalom⁴ if |s(n)| ≤ h(n) for each n ∈ ω,

⁴ By A. Blass [2].

Let change - terminology

• Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

a sequence $s \in {}^{\omega}\mathcal{A}$ will be called an \mathcal{A} -slalom.

• Let $h \in {}^{\omega}\omega$ and $h(n) \ge 1$ for all but finitely many $n \in \omega$. a Fin-slalom s is an h-slalom⁴ if $|s(n)| \le h(n)$ for each $n \in \omega$,

• A function $\varphi \in {}^{\omega}\omega \mathcal{J}$ -evades \mathcal{A} -slalom s if $\{n: \varphi(n) \in s(n)\} \in \mathcal{J}$.

⁴ By A. Blass [2].

Let change - terminology

• Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

a sequence $s \in {}^{\omega}\mathcal{A}$ will be called an \mathcal{A} -slalom.

• Let $h \in {}^{\omega}\omega$ and $h(n) \ge 1$ for all but finitely many $n \in \omega$. a Fin-slalom s is an h-slalom⁴ if $|s(n)| \le h(n)$ for each $n \in \omega$,

• A function $\varphi \in {}^{\omega}\omega \mathcal{J}$ -evades \mathcal{A} -slalom s if $\{n: \varphi(n) \in s(n)\} \in \mathcal{J}$.

⁴ By A. Blass [2].

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

 $\lambda(\mathcal{A},\mathcal{J}) = \min\left\{|\mathcal{S}|: \ \mathcal{S} \text{ consists of } \mathcal{A}\text{-slaloms, } (\forall \varphi \in {}^{\omega}\omega)(\exists s \in \mathcal{S}) \ \neg(\varphi \ \mathcal{J}\text{-evades } s)\right\}$

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

 $\lambda(\mathcal{A},\mathcal{J}) = \min \left\{ |\mathcal{S}|: \ \mathcal{S} \text{ consists of } \mathcal{A}\text{-slaloms, } (\forall \varphi \in {}^{\omega}\omega) (\exists s \in \mathcal{S}) \ \neg(\varphi \ \mathcal{J}\text{-evades } s) \right\}$

Proposition

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$ be such family that $\bigcup \mathcal{A} = \omega$.

1) If \mathcal{A} has the finite union property and $\operatorname{Fin} \subseteq \mathcal{A}$ then

 $\mathfrak{p} \leq \lambda(\mathcal{A}, \operatorname{Fin}) \leq \mathfrak{b}.$

2 If \mathcal{A} does not have the finite union property then

$$\lambda(\mathcal{A},\operatorname{Fin}) = \min\left\{k: \{A_0,A_1,\ldots,A_{k-1}\} \subseteq \mathcal{A} \text{ and } \bigcup_{i < k} A_i = \omega\right\}.$$

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

 $\lambda(\mathcal{A},\mathcal{J}) = \min \left\{ |\mathcal{S}|: \ \mathcal{S} \text{ consists of } \mathcal{A}\text{-slaloms, } (\forall \varphi \in {}^{\omega}\omega) (\exists s \in \mathcal{S}) \ \neg(\varphi \ \mathcal{J}\text{-evades } s) \right\}$

Proposition

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$ be such family that $\bigcup \mathcal{A} = \omega$.

1) If \mathcal{A} has the finite union property and $\operatorname{Fin} \subseteq \mathcal{A}$ then

 $\mathfrak{p} \leq \lambda(\mathcal{A}, \operatorname{Fin}) \leq \mathfrak{b}.$

2 If \mathcal{A} does not have the finite union property then

$$\lambda(\mathcal{A}, \operatorname{Fin}) = \min \left\{ k : \{A_0, A_1, \dots, A_{k-1}\} \subseteq \mathcal{A} \text{ and } \bigcup_{i < k} A_i = \omega
ight\}.$$

• e.g.: $\lambda(\mathcal{P}(\omega), \operatorname{Fin}) = 1.$

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

 $\lambda(\mathcal{A},\mathcal{J}) = \min \left\{ |\mathcal{S}|: \ \mathcal{S} \text{ consists of } \mathcal{A}\text{-slaloms, } (\forall \varphi \in {}^{\omega}\omega) (\exists s \in \mathcal{S}) \ \neg(\varphi \ \mathcal{J}\text{-evades } s) \right\}$

Proposition

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$ be such family that $\bigcup \mathcal{A} = \omega$.

1) If \mathcal{A} has the finite union property and $\operatorname{Fin} \subseteq \mathcal{A}$ then

 $\mathfrak{p} \leq \lambda(\mathcal{A}, \operatorname{Fin}) \leq \mathfrak{b}.$

2 If \mathcal{A} does not have the finite union property then

$$\lambda(\mathcal{A}, \operatorname{Fin}) = \min \left\{ k : \{A_0, A_1, \dots, A_{k-1}\} \subseteq \mathcal{A} \text{ and } \bigcup_{i < k} A_i = \omega
ight\}.$$

• e.g.: $\lambda(\mathcal{P}(\omega), \operatorname{Fin}) = 1.$

• What about $\mathcal{A} \subseteq \operatorname{Fin}$ which has the finite union property?

• Let a function $h \in {}^{\omega}\omega$ not be a \mathcal{J} -equal to zero, i.e. $\{n: h(n) \neq 0\} \notin \mathcal{J}.^{5}$

⁵Recall that a function $\varphi \mathcal{J}$ -evades slalom s iff $\{n : \varphi(n) \in s(n)\} \notin \mathcal{J}\}$. ⁶Compare with [1] or [5].

• Let a function $h \in {}^{\omega}\omega$ not be a \mathcal{J} -equal to zero, i.e. $\{n: h(n) \neq 0\} \notin \mathcal{J}.^{5}$

$$\begin{split} \lambda(h,\mathcal{J}) &= \min\{|\mathcal{S}|: \ \mathcal{S} \text{ consists of } h\text{-slaloms, } (\forall \varphi \in {}^{\omega}\omega)(\exists s \in \mathcal{S}) \\ \neg(\varphi \ \mathcal{J}\text{-evades } s)\}. \end{split}$$

⁵Recall that a function $\varphi \mathcal{J}$ -evades slalom s iff $\{n : \varphi(n) \in s(n)\} \notin \mathcal{J}\}$. ⁶Compare with [1] or [5].

• Let a function $h \in {}^{\omega}\omega$ not be a \mathcal{J} -equal to zero, i.e. $\{n: h(n) \neq 0\} \notin \mathcal{J}.^{5}$

$$\begin{split} \lambda(h,\mathcal{J}) &= \min\{|\mathcal{S}|: \ \mathcal{S} \text{ consists of } h\text{-slaloms, } (\forall \varphi \in {}^{\omega}\omega)(\exists s \in \mathcal{S}) \\ \neg(\varphi \ \mathcal{J}\text{-evades } s)\}. \end{split}$$

• By T. Bartoszyński [1] (1984)

 $\operatorname{non}(\mathcal{M}) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq {}^{\omega}\omega, \ (\forall \varphi \in {}^{\omega}\omega) (\exists f \in \mathcal{F}) \mid \left\{ i : \varphi(i) = f(i) \right\} \mid = \aleph_0 \right\}.$

⁵Recall that a function $\varphi \mathcal{J}$ -evades slalom s iff $\{n : \varphi(n) \in s(n)\} \notin \mathcal{J}\}$. ⁶Compare with [1] or [5].

• Let a function $h \in {}^{\omega}\omega$ not be a \mathcal{J} -equal to zero, i.e. $\{n: h(n) \neq 0\} \notin \mathcal{J}.^{5}$

$$\begin{split} \lambda(h,\mathcal{J}) &= \min\{|\mathcal{S}|: \ \mathcal{S} \text{ consists of } h\text{-slaloms, } (\forall \varphi \in {}^{\omega}\omega)(\exists s \in \mathcal{S}) \\ \neg(\varphi \ \mathcal{J}\text{-evades } s)\}. \end{split}$$

• By T. Bartoszyński [1] (1984) $\operatorname{non}(\mathcal{M}) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq {}^{\omega}\omega, \; (\forall \varphi \in {}^{\omega}\omega)(\exists f \in \mathcal{F}) \mid \{i : \varphi(i) = f(i)\} \mid = \aleph_0 \right\}.$

• Consequently,

 $\lambda(h, \operatorname{Fin}) = \operatorname{non}(\mathcal{M})$ for any admissible $h \in {}^{\omega}\omega.{}^{6}$

⁵Recall that a function $\varphi \mathcal{J}$ -evades slalom s iff $\{n : \varphi(n) \in s(n)\} \notin \mathcal{J}\}$. ⁶Compare with [1] or [5].

Diagram. Cardinal invariants of the continuum and the $\lambda(S, \mathcal{J})$.

Recall

- a sequence $\langle U_n : n \in \omega \rangle$ of open sets of X is a \mathcal{I} - γ -cover of X iff the set $\{n \in \omega : x \notin U_n\} \in \mathcal{I}$ for each $x \in X$,
- \mathcal{I} - Γ denotes the family of all \mathcal{I} - γ -covers of X.⁷

 $^{^7\}mathrm{Fin}\text{-}\Gamma$ known as Γ was introduced by M. Scheepers [4].

Recall

- a sequence $\langle U_n : n \in \omega \rangle$ of open sets of X is a \mathcal{I} - γ -cover of X iff the set $\{n \in \omega : x \notin U_n\} \in \mathcal{I}$ for each $x \in X$,
- \mathcal{I} - Γ denotes the family of all \mathcal{I} - γ -covers of X.⁷

Let $c \in \omega$ be a constant.

- A sequence (U_n: n ∈ ω) is called a γ_c-cover iff | {n ∈ ω : x ∉ U_n} | ≤ c for each x ∈ X.
 - For instance, let $\{x_n : n \in \omega\}$ be a set of pairwise disjoint point of X and define $U_n = X \setminus \{x_n\}$. Then $\langle U_n : n \in \omega \rangle$ is a γ_1 -cover.
- Γ^c denotes the family of all γ_c -covers of X.

 $^{^7\}mathrm{Fin}\text{-}\Gamma$ known as Γ was introduced by M. Scheepers [4].

$S_1(\Gamma_h, \mathcal{J}\text{-}\Gamma)$

Let $h \in {}^\omega \omega$

• Γ_h denotes the family of all sequences of $\gamma_{h(n)}$ -covers for a function i.e.,

$$\begin{array}{ll} \langle \langle U_{n,m}: \ m \in \omega \rangle: \ n \in \omega \rangle \in \Gamma_h \\ & \updownarrow \\ \langle U_{n,m}: \ m \in \omega \rangle \text{ is a } \gamma_{h(n)}\text{-cover for each } n \in \omega. \end{array}$$

Lemma

- Let X be a topological space. If $|X| < \lambda(h, \mathcal{J})$ then X is an $S_1(\Gamma_h, \mathcal{J} \cdot \Gamma)$ -space.
- Let D be a discrete topological space and $h \in {}^{\omega}\omega$ being no \mathcal{J} -equal to zero. Then $|D| < \lambda(h, \mathcal{J})$ if and only if D is an $S_1(\Gamma_h, \mathcal{J}-\Gamma)$ -space.

$S_1(\Gamma_h, \mathcal{J}\text{-}\Gamma)$

Let $h \in {}^\omega \omega$

• Γ_h denotes the family of all sequences of $\gamma_{h(n)}$ -covers for a function i.e.,

$$\begin{array}{ll} \langle \langle U_{n,m}: \ m \in \omega \rangle: \ n \in \omega \rangle \in \Gamma_h \\ & \updownarrow \\ \langle U_{n,m}: \ m \in \omega \rangle \text{ is a } \gamma_{h(n)}\text{-cover for each } n \in \omega. \end{array}$$

Lemma

- Let X be a topological space. If $|X| < \lambda(h, \mathcal{J})$ then X is an $S_1(\Gamma_h, \mathcal{J} \cdot \Gamma)$ -space.
- Let D be a discrete topological space and $h \in {}^{\omega}\omega$ being no \mathcal{J} -equal to zero. Then $|D| < \lambda(h, \mathcal{J})$ if and only if D is an $S_1(\Gamma_h, \mathcal{J}-\Gamma)$ -space.

Corollary

 $\operatorname{non}(S_1(\Gamma_h, \mathcal{J} \cdot \Gamma)) = \lambda(h, \mathcal{J}).$ In particular, $\operatorname{non}(S_1(\Gamma_h, \operatorname{Fin})) = \operatorname{non}(\mathcal{M}).$

 $\mathrm{S}_1(\Gamma_h,\Gamma)$

Diagram. Relations with respect to well-known $S_1(\Gamma, \Gamma)$ -space.

 $S_1(\Gamma_h,\Gamma)$

Diagram. Relations with respect to well-known $S_1(\Gamma, \Gamma)$ -space.

Proposition

The Baire space is not an $S_1(\Gamma_h, \Gamma)$ -space.

 $S_1(\Gamma_h,\Gamma)$

Diagram. Relations with respect to well-known $S_1(\Gamma, \Gamma)$ -space.

Proposition

The Baire space is not an $S_1(\Gamma_h, \Gamma)$ -space.

• even more the Baire space is not an $S_1(\Gamma_1, \Gamma)$ -space,

 $S_1(\Gamma_h,\Gamma)$

Diagram. Relations with respect to well-known $S_1(\Gamma, \Gamma)$ -space.

Proposition

The Baire space is not an $S_1(\Gamma_h, \Gamma)$ -space.

- even more the Baire space is not an $S_1(\Gamma_1, \Gamma)$ -space,
- $\lambda(h, \mathcal{J}) = \operatorname{non}(\mathcal{M})$ where $h \in {}^{\omega}\omega$ is not \mathcal{J} -equal to zero and \mathcal{J} is an ideal that has the Baire property.

$S_1(\Gamma^c,\Gamma^c)$ as a weird phenomenon...

 A set {X_n ⊆ X: n ∈ ω} is k-wise disjoint iff any k-tuple of sets has the empty intersection.⁸

⁸Let stress that notions k-wise disjoint sets and sequences will be interchangeable, i.e., a sequence $\langle X_n : n \in \omega \rangle$ is k-wise disjoint if and only if the corresponding set $\{X_n \subseteq X : n \in \omega\}$ is k-wise disjoint.

$S_1(\Gamma^c,\Gamma^c)$ as a weird phenomenon...

- A set {X_n ⊆ X: n ∈ ω} is k-wise disjoint iff any k-tuple of sets has the empty intersection.⁸
- characterization of γ_c -covers:

A sequence $\langle U_n: n \in \omega \rangle$ of open sets is a γ_c -cover if and only if $\{X \setminus U_n: n \in \omega\}$ is a (c+1)-wise disjoint set of closed sets in X.

⁸Let stress that notions k-wise disjoint sets and sequences will be interchangeable, i.e., a sequence $\langle X_n : n \in \omega \rangle$ is k-wise disjoint if and only if the corresponding set $\{X_n \subseteq X : n \in \omega\}$ is k-wise disjoint.

$S_1(\Gamma^c,\Gamma^c)$ as a weird phenomenon...

- A set {X_n ⊆ X: n ∈ ω} is k-wise disjoint iff any k-tuple of sets has the empty intersection.⁸
- characterization of γ_c -covers:

A sequence $\langle U_n: n \in \omega \rangle$ of open sets is a γ_c -cover if and only if $\{X \setminus U_n: n \in \omega\}$ is a (c+1)-wise disjoint set of closed sets in X.

Diagram. Relations with respect to well-known $S_1(\Gamma, \Gamma)$ -space.

⁸Let stress that notions k-wise disjoint sets and sequences will be interchangeable, i.e., a sequence $\langle X_n : n \in \omega \rangle$ is k-wise disjoint if and only if the corresponding set $\{X_n \subseteq X : n \in \omega\}$ is k-wise disjoint.

Proposition

Let c be a constant.

- No infinite discrete space is an $S_1(\Gamma^1, \Gamma^c)$ -space.
- Let X be a space with infinitely many accumulation points. Then X is not an S₁(Γ¹, Γ¹)-space.

Proposition

Let c be a constant.

- No infinite discrete space is an $S_1(\Gamma^1, \Gamma^c)$ -space.
- Let X be a space with infinitely many accumulation points. Then X is not an S₁(Γ¹, Γ¹)-space.
- Each space with finite many but at least one accumulation points is an S₁(Γ^c, Γ¹)-space.

Proposition

Let c be a constant.

- No infinite discrete space is an $S_1(\Gamma^1, \Gamma^c)$ -space.
- Let X be a space with infinitely many accumulation points. Then X is not an S₁(Γ¹, Γ¹)-space.
- Each space with finite many but at least one accumulation points is an $S_1(\Gamma^c, \Gamma^1)$ -space.
- There is an $S_1(\Gamma^1, \Gamma^2)$ -space which is not an $S_1(\Gamma^1, \Gamma^1)$ -space.

PAVOL JOZEF ŠAFÁRIK UNIVERSITY IN KOŠICE Faculty of Science

INSTITUTE OF MATHEMATICS

Thank you for your attention

viera.sottova@student.upjs.sk

Bibliography

- Bartoszyński T.: Additivity of measure implies additivity of category. Trans. Amer. Math. Soc. **281** (1984), 209–213.
- Blass A.: Combinatorial cardinal characteristics of the Continuum. Foreman M., Kanamori A. (eds.) Handbook of Set Theory. Springer, Dordrecht (2010), 24–27.
- Bukovský L., Das P., Šupina J.: *Ideal quasi-normal convergence and related notions*, Colloq. Math. 146 (2017), 265-281.
- Scheepers M.: *Combinatorics of open covers I: Ramsey theory*, Topology Appl. **69** (1996), 31–62.
- Šottová V.:*Cardinal invariant* $\lambda(S, \mathcal{J})$. In: GEYSER MATH. CASS. **1** (2019), 64–72.
- Šottová V., Šupina J.: Principle S₁(P, R): ideals and functions. In: Topology Appl. 258 (2019), 282–304.
 - Šupina J.: *Ideal* QN-*spaces*. J. Math. Anal. Appl. **434** (2016), 477–491.